Abstract

Introduction: The role of the spinal muscles in scoliogenesis is not fully substantiated. Do they act scoliogenic (inducing scoliosis) or counteract scoliosis in adolescent idiopathic scoliosis (AIS)? In this study, we will examine this by using selectively placed Transcutaneous Electric Stimulation (TES) combined with a cinematic radiographic technique and by performing electromyographic (EMG) evaluations during various motor tasks. Method: This is a cross-sectional study of subjects with small-curve AIS. Using cinematic radiography, they were evaluated dynamically either under electrical stimulation or when performing motor tasks of left and right lateral bending and rotation whilst measuring the muscle activity by EMG. Results: Forty-five patients with AIS were included as subjects. Five subjects volunteered for TES and six subjects performed the motor tasks with EMG. At the initial visual evaluation, and when stimulated with TES, the frontal plane spatial positions of the vertebral bodies showed discrete changes without an apparent pattern. However, analyzing the spatial positions when calibrated, we found that the spinal muscles exert a compressive 'response' with a minor change in the Cobb angle (CA) in small-curve AIS (CA = 10-20°). In larger curves (CA > 20°), TES induced a 'larger deformity' with a relative four-fold change in the CA compared to small-curve AIS with a ratio of 0.6. When evaluating local amplitude (peak) or cumulative (mean) EMG signals, we were unable to find consistent asymmetries. However, one subject had rapid progression and one regressed to a straight spine. When adding the absolute EMG ratios for all four motor tasks, the subject with progression had almost 10-fold less summed EMG ratios, and the subject with regression had more than 3-fold higher summed EMG ratios. Discussion: Based on these findings, we suggest that the spinal muscles in small-curve AIS have a stabilizing function maintaining a straight spine and keeping it in the midline. When deformities are larger (CA > 20°), the spine muscle curve exerts a scoliogenic 'response'. This suggests that the role of the muscles converts from counteracting AIS and stabilizing the spine to being scoliogenic for a CA of more than 20°. Moreover, we interpret higher EMG ratios as heightened asymmetric spinal muscle activity when the spinal muscles try to balance the spine to maintain or correct the deformity. When progression occurs, this is preceded or accompanied by decreased EMG ratios. These findings must be substantiated by larger studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.