Abstract

A novel electrochemical approach was introduced for crosslinking resorcinol-formaldehyde (RF) gels at room temperature without utilizing a catalyst or a buffer. The electrochemically cross-linked gels and their subsequent activated carbons exhibited enhanced physical properties. They were characterized via different methods such as scanning electron microscope (SEM), Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), and surface area and porosity analyzer. The gels prepared with this novel approach range from dark red to deep yellow in color; and consist of different particle sizes depending on the used voltage. FTIR spectra showed that the gels prepared with the novel and conventional methods have identical chemical identities. However, the RF gels prepared with the novel approach of synthesis expose more controllable properties such as pore structure, surface area, particle size, etc, than those prepared with the conventional method, which makes them easier to design for different applications. The corresponding activated carbons showed higher surface areas and narrower micropore distributions that can be varied easily with voltage, which is a key factor in this work as a controlling parameter. Consequently, the approach of crosslinking gels with electric power is important for the controlled preparation of many new and nontraditional cross-linked gels for various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.