Abstract

Net ecosystem exchange (NEE) of carbon dioxide (CO2) was measured in a cool temperate peatland in northwestern Turkey on a continuous basis using eddy covariance (EC) sensors and multiple (non-)linear regression-M(N)LR-models. Our results showed that hourly NEE varied between −1.26 and 1.06 mg CO2 m−2 s−1, with a mean value of 0.11 mg CO2 m−2 s−1. Nighttime ecosystem respiration (RE) was on average measured as 0.23 ± 0.09 mg CO2 m−2 s−1. Two best-fit M(N)LR models estimated daytime RE as 0.64 ± 0.31 and 0.24 ± 0.05 mg CO2 m−2 s−1. Total RE as the sum of nighttime and daytime RE ranged from 0.47 to 0.87 mg CO2 m−2 s−1, thus yielding estimates of gross primary productivity (GPP) at −0.35 ± 0.18 and −0.74 ± 0.43 mg CO2 m−2 s−1. Use of EC sensors and M(N)LR models is one of the most direct ways to quantify turbulent CO2 exchanges among the soil, vegetation and atmosphere within the atmospheric boundary layer, as well as source and sink behaviors of ecosystems.

Highlights

  • Though spatially small (5% of the terrestrial biosphere) compared with most other ecosystems [1,2], peatlands play a significant role in carbon (C) and water metabolism of the World

  • The use of the eddy covariance (EC) method and sensors on a long-term and continuous basis across the World has led to the establishment of an integrated global network for standardization of flux tower activities and a network for standardization and development of spectral sensors toward bridging the gap between remote and proximal sensing

  • There is a lack of information about C metabolism of peatland ecosystems in Turkey, and this study is the first to comprehensively determine C dynamics and components in one of the remaining major peatlands

Read more

Summary

Introduction

Though spatially small (5% of the terrestrial biosphere) compared with most other ecosystems [1,2], peatlands play a significant role in carbon (C) and water metabolism of the World. Understanding and quantifying C dynamics of peatlands are crucial to prediction of responses to global climate change and rehabilitation of peatlands under the increasing magnitude and rate of human-induced disturbances. There is a lack of information about C metabolism of peatland ecosystems in Turkey, and this study is the first to comprehensively determine C dynamics and components in one of the remaining major peatlands. The objective of this study was to quantify the rate, magnitude, and timing of CO2 exchange between the atmosphere and Yenicaga peatland using the EC sensors and multiple (non-)linear regression-M(N)LR-models

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.