Abstract
Background:Autism classification work on fNIRS data using dynamic graph networks. Explore the impact of the dynamic connection relationship between brain channels on ASD, and compare the brain channel connection diagrams of ASD and TD to explore potential factors that influence the development of autism. Method:Using dynamic graph construction to mine the dynamic relationships of fNIRS data, obtain spatio-temporal correlations through dynamic feature extraction, and improve the information extraction capabilities of the network through spatio-temporal graph pooling to achieve classification of ASD. Result:A classification effect with an accuracy of 97.2% was achieved using a short sequence of 1.75s. The results showed that the dynamic connections of channel 5 and 19, channel 12 and 25, and channel 7 and 34 have a greater impact on the classification of autism. Comparison with previously used method(s): Compared with previous deep learning models, our model achieves efficient classification using short-term fNIRS data of 1.75s, and analyzes the impact of dynamic connections on classification through dynamic graphs. Conclusion:Using Dynamic Spatio-Temporal Graph Pooled Neural Networks (DSTGPN), dynamic connectivity between brain channels was found to have an impact on the classification of autism. By modeling the brain channel relationship maps of ASD and TD, hyperlink clusters were found to exist on the brain channel connections of ASD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.