Abstract

Computing the numerical solution of the Kadanoff–Baym equations, a set of nonlinear integral differential equations satisfied by the two-time Green’s functions derived from many-body perturbation theory for a quantum many-body system away from equilibrium, is a challenging task. Recently, we have successfully applied dynamic mode decomposition (DMD) to construct a data driven reduced order model that can be used to extrapolate the time-diagonal of a two-time Green’s function from numerical solutions of the KBE within a small time window. In this paper, we extend the previous work and use DMD to predict off-diagonal elements of the two-time Green’s function. We partition the two-time Green’s function into a number of one-time functions along the diagonal and subdiagonals of the two-time window as well as in horizontal and vertical directions. We use DMD to construct separate reduced order models to predict the dynamics of these one-time functions in a two-step procedure. We extrapolate along diagonal and several subdiagonals within a subdiagonal band of a two-time window in the first step. In the second step, we use DMD to extrapolate the Green’s function outside of the sub-diagonal band. We demonstrate the efficiency and accuracy of this approach by applying it to a two-band Hubbard model problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call