Abstract

This article analyses students' thinking as they interacted with a dynamic geometric sketch designed to explore eigenvectors and eigenvalues. We draw on the theory of instrumental genesis and, in particular, attend to the different dragging modalities used by the students throughout their explorations. Given the kinaesthetic and dynamic features of the environment, we also draw on theories of embodied cognition to analyse students' emergent visual and kinaesthetic understandings. Our analysis suggests that, in contrast with the predominantly analytic-arithmetic mode of thinking (and the consequent proce- dural knowledge) reported in the literature, our students developed a synthetic-geometric mode of thinking, which researchers have pointed to as being essential to the understanding of linear algebra, but absent for most students. We also found that their synthetic-geometry mode of thinking strongly featured motion-based conceptions of eigenvectors and eigen- values, thus leading us to characterise their thinking as dynamic-synthetic-geometric.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call