Abstract

We study future DUNE sensitivity to various electromagnetic couplings of neutrinos, including magnetic moments, milli-charges, and charge radii. The DUNE PRISM capabilities play a crucial role in constraining the electron flavored couplings. We find that DUNE will be able to place the strongest beam based constraint on the muon-neutrino magnetic moment by improving on LSND’s bounds by roughly a factor of two, although Borexino’s constraint from solar neutrinos will be stronger. For the muon neutrino millicharge DUNE can place the leading beam based bound, with two orders of magnitude improvement compared to the existing COHERENT constraint, suggesting that DUNE can be useful for light mediators more generally. Despite this strength, the millicharge bounds are not competitive with strong bounds from stellar cooling, beta-decay, and matter stability. Finally, DUNE may be able to test the SM prediction for the muon neutrino charge radius, by placing a constraint two times better than CHARM-II and CCFR experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call