Abstract

BackgroundDigital droplet PCR (ddPCR) is a very sensitive high throughput genotyping methodology. To date, the use of ddPCR in immunohematology is restricted to fetal genotyping of red blood cell antigens. Our hypothesis is that this technology could be applied to screen for rare red blood cell genotypes, such as Di(b-). MethodsNucleic acid of 3168 donors was extracted for viral screening routine in pools of 6, which were converted into three types of 48-donor pools: control pools (only DI*B/*B samples), pools with varying amount of DI*A/*B samples (n = 1–5) and a pool with one rare DI*A/*A sample. Pools were genotyped using ddPCR to detect and quantify DI*A and DI*B alleles. ResultsDI*A allele was accurately detected in all pools containing Di(a + b+) samples and in the pool containing one Di(a + b-) sample. No copies were detected in the control pools (n = 60). The ratio between the number of DI*A and DI*B copies varied significantly between the pools and the triplicates. ConclusionThe proposed ddPCR assay was accurate in identifying the rare DI*A allele in large pools of donors and can be applied to screen for Di(b-) phenotype. The strategy can potentially be extended to search for other rare RBC phenotypes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.