Abstract

AbstractProperly fitting ocean models to observations is crucial for improving model performance and understanding ocean dynamics. Near-surface velocity measurements from the Global Drifter Program (GDP) contain valuable information about upper-ocean circulation and air–sea fluxes on various space and time scales. This study explores whether GDP measurements can be used for usefully constraining the surface circulation from coarse-resolution ocean models, using global solutions produced by the consortium for Estimating the Circulation and Climate of the Ocean (ECCO) as an example. To address this problem, a careful examination of velocity data errors is required. Comparisons between an ECCO model simulation, performed without any data constraints, and GDP and Ocean Surface Current Analyses Real-Time (OSCAR) velocity data, over the period 1992–2017, reveal considerable differences in magnitude and pattern. These comparisons are used to estimate GDP data errors in the context of the time-mean and time-variable surface circulations. Both instrumental errors and errors associated with limitations in model physics and resolution (representation errors) are considered. Given the estimated model–data differences, errors, and signal-to-noise ratios, our results indicate that constraining ocean-state estimates to GDP can have a substantial impact on the ECCO large-scale time-mean surface circulation over extensive areas. Impact of GDP data constraints on the ECCO time-variable circulation would be weaker and mainly limited to low latitudes. Representation errors contribute substantially to degrading the data impacts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.