Abstract

This paper proposes what we believe is a new method to remove the contribution of parasitic reflections in the images of the laser optical feedback imaging (LOFI) technique. This simple method allows us to extend the LOFI technique to long-distance applications, as imaging through a fog or a smoke. The LOFI technique is an ultrasensitive imaging technique that is interesting for imaging objects through a scattering medium. However, the LOFI sensitivity can be dramatically limited by parasitic optical feedback occurring in the experimental setup. In previous papers [Appl. Opt.48, 64 (2009)10.1364/AO.48.000064APOPAI1559-128X, Opt. Lett.37, 2514 (2012)10.1364/OL.37.002514OPLEDP0146-9592], we already have proposed methods to filter a parasitic optical feedback, but they are not well suited to metric working distances. This new method uses a Doppler frequency shift induced by the moving mirror used to scan the object to be imaged. Using this Doppler frequency shift, we can distinguish the photons reflected by the target and the parasitic photons reflected by the optical components in the experimental setup. In this paper, we demonstrated theoretically and experimentally the possibility to filter the parasitic reflection in LOFI images using the Doppler frequency shift. This method significantly improves the signal-to-noise ratio by a factor 15 and we can obtain a shot noise limited image through a scattering medium of an object at 3 m from the detector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call