Abstract
In the present study, using the inverse problem (IP) of magnetotelluric sounding (MTS) as an example, we consider the use of neural networks to solve high-dimensional coefficient inverse problems. To reduce the incorrectness, a complex approach is considered related to the use of narrow classes of geological models, with prior selection of the model class by solving the classification problem by MTS data. Within the framework of this approach, the actual direction of work is to reduce the volume of calculations when re-building the system for another set of geological models. This goal can be achieved by selecting the essential features. The present paper is devoted to the study of the applicability of various selection methods to the MTS IP. Also, in this paper we consider taking into account domain knowledge about the studied object in the process of selection of essential features using methods such as wrapper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.