Abstract
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory. In this paper for the most part centered around number theory ideas which are utilized in different themes like group theory and ring theory, these speculations are extremely unique ideas to comprehend among this we might want to express our perspectives as far as number hypothesis/theory ideas, such as, to calculate some subgroups of a cyclic group, number of ideals, principal ideals of a ring and number of generators of a cyclic group as far as both regular procedure and number speculation/hypothesis thoughts.
Highlights
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations
Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields
In this paper for the most part centered around number theory ideas which are utilized in different themes like group theory and ring theory, these speculations are extremely unique ideas to comprehend among this we might want to express our perspectives as far as number hypothesis/theory ideas, such as, to calculate some subgroups of a cyclic group, number of ideals, principal ideals of a ring and number of generators of a cyclic group as far as both regular procedure and number speculation/hypothesis thoughts
Summary
The theory of numbers is an area of mathematics which deals with the properties of whole and rational numbers. Analytic number theory is one of its branches, which involves study of arithmetical functions, their properties and the interrelationships that exist among these functions. Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers, finite fields, and function fields. These properties, such as whether a ring admits unique factorization, the behavior of ideals, and the Galois groups of fields, can resolve questions of primary importance in number theory, like the existence of solutions to Diophantine equations
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Theoretical and Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.