Abstract

We tackle the prediction of instructor intervention in student posts from discussion forums in Massive Open Online Courses (MOOCs). Our key finding is that using automatically obtained discourse relations improves the prediction of when instructors intervene in student discussions, when compared with a state-of-the-art, feature-rich baseline. Our supervised classifier makes use of an automatic discourse parser which outputs Penn Discourse Treebank (PDTB) tags that represent in-post discourse features. We show PDTB relation-based features increase the robustness of the classifier and complement baseline features in recalling more diverse instructor intervention patterns. In comprehensive experiments over 14 MOOC offerings from several disciplines, the PDTB discourse features improve performance on average. The resultant models are less dependent on domain-specific vocabulary, allowing them to better generalize to new courses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.