Abstract

Sea-level rise poses considerable risks to coastal communities, ecosystems, and infrastructure. Decision makers are faced with uncertain sea-level projections when designing a strategy for coastal adaptation. The traditional methods are often silent on tradeoffs as well as the effects of tail-area events and of potential future learning. Here we reformulate a simple sea-level rise adaptation model to address these concerns. We show that Direct Policy Search yields improved solution quality, with respect to Pareto-dominance in the objectives, over the traditional approach under uncertain sea-level rise projections and storm surge. Additionally, the new formulation produces high quality solutions with less computational demands than an intertemporal optimization approach. Our results illustrate the utility of multi-objective adaptive formulations for the example of coastal adaptation and point to wider-ranging application in climate change adaptation decision problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.