Abstract

High-throughput microscopy has enabled screening of cell phenotypes at unprecedented scale. Systematic identification of cell phenotype changes (such as cell morphology and protein localization changes) is a major analysis goal. Because cell phenotypes are high-dimensional, unbiased approaches to detect and visualize the changes in phenotypes are still needed. Here, we suggest that changes in cellular phenotype can be visualized in reduced dimensionality representations of the image feature space. We describe a freely available analysis pipeline to visualize changes in protein localization in feature spaces obtained from deep learning. As an example, we use the pipeline to identify changes in subcellular localization after the yeast GFP collection was treated with hydroxyurea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.