Abstract
We investigated a method to measure sheet erosion by characterising the soil erosion of an upland field in a dryland environment. Digital photogrammetry was used to measure the erosion rates of soil surfaces packed to different densities under simulated rainfall or wind conditions. The photogrammetry system consisted of 2 digital cameras, a rainfall simulator, a wind tunnel, and a computer program for 3-dimensional algorithm analysis. First, we assessed the accuracy of our method by comparing conventionally measured data to photogrammetric data under conditions of either no rainfall or no wind application. Two statistical parameters were used to evaluate the soil surface evolution: the mean absolute error (MAE) and the mean relative error (MRE). Their values were 0.21 mm and 15.8%, respectively. We then assessed the precision of our system under simulated rainfall conditions using 3 different dry bulk densities for the packed saturated soil surface. At densities of 0.91, 0.98, and 1.09 g/cm3, the MAE (MRE) values were 2.21 mm (392.5%), 1.07 mm (126.4%), and 0.59 mm (57.6%), respectively. It was possible to monitor and evaluate both the amount of eroded soil and the erosion mechanism in a specific area. Moreover, this system could be applied to measuring wind erosion with an MAE accuracy as high as 0.21 mm. The digital elevation models (DEMs) allowed for detailed analyses of soil surface evolution, and it was also possible to monitor sheet erosion with high spatial and temporal resolutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.