Abstract

We use local diffusion maps to assess the quality of two types of collective variables (CVs) for a recently published hydrogen combustion benchmark dataset1 that contains ab initio molecular dynamics (MD) trajectories and normal modes along minimum energy paths. This approach was recently advocated in2 for assessing CVs and analyzing reactions modeled by classical MD simulations. We report the effectiveness of this approach to molecular systems modeled by quantum ab initio MD. In addition to assessing the quality of CVs, we also use global diffusion maps to perform committor analysis as proposed in.2 We show that the committor function obtained from the global diffusion map allows us to identify transition regions of interest in several hydrogen combustion reaction channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.