Abstract

Digital inline holographic microscopy PIV/PTV (DIHM-PIV/PTV) has the ability to provide 4-dimensional (4D), i.e. time-resolved, 3-component 3-dimensional (3C-3D) flow measurement with high spatial and temporal resolution, compact optical setup and minimal calibration Sun et al. (2020) compared to most other volumetric techniques such as tomo-PIV, defocusing PIV, etc. Despite all these advantages DIHMPIV/PTV has not yet developed into a standard laboratory tool due to some major limitations such as the extended depth-of-focus (DOF) problem and the virtual image effect which cause artefacts in the standard reconstruction volume limiting the seeding concentration and thus the achievable velocity spatial resolution. In order to mitigate the above-mentioned limitations we present a novel particle localization and extraction methodology which allows the minimization of these artefacts from the standard reconstruction and perform PIV/PTV analysis on the particle volume fields only. The proposed algorithm is based on the differential phase, which is the axial phase shift of the object wave compared to the reference plane wave propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.