Abstract

The importance of multi-objective optimization in hybrid nanofluid research lies in its wide-ranging applications across fields such as microelectronics, aerospace, and renewable energy. These specialized fluids hold the potential to elevate the performance and efficiency of diverse systems through enhanced heat transfer capabilities. This research endeavor is centered around optimizing a hybrid nanofluid composed of Silicon Oxide-MWCNT-Alumina/Water by leveraging a mix of heuristic approaches and an adaptive neuro-fuzzy inference system. To this end, the most influential set of input parameters has been identified using four state-of-the-art algorithms: Non-dominated Genetic Algorithm, multi-objective particle swarm optimization, Strength Pareto Evolutionary Algorithm 2, and Pareto Envelope-based Selection Algorithm 2. The goal of the optimization process is to modify the temperature (T = 20 °C to 60 °C) and the volume fraction of nanoparticles (SVF=0.1 % to 0.5 %). Finding the optimal combination of these parameters that results in the hybrid nanofluid with the maximum thermal conductivity (knf) and the lowest dynamic viscosity is the main objective. The findings of this research have the potential to drastically improve the performance of systems in a variety of applications and to change the creation of sophisticated, high-efficiency heat transfer fluids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.