Abstract

AbstractThere are many source-level analyses or instrumentation tools that enforce various safety properties. In this paper we present an infrastructure that can be used to check independently that the assembly output of such tools has the desired safety properties. By working at assembly level we avoid the complications with unavailability of source code, with source-level parsing, and we certify the code that is actually deployed.The novel feature of the framework is an extensible dependently-typed framework that supports type inference and mutation of dependent values in memory. The type system can be extended with new types as needed for the source-level tool that is certified. Using these dependent types, we are able to express the invariants enforced by CCured, a source-level instrumentation tool that guarantees type safety in legacy C programs. We can therefore check that the x86 assembly code resulting from compilation with CCured is in fact type-safe.KeywordsBasic BlockMemory StateDependent TypeType PolicySequence PointerThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.