Abstract
High-throughput messenger RNA (mRNA) expression profiling with microarray has been demonstrated as a more effective method of cancer diagnosis and treatment than the traditional morphology or clinical parameter-based methods. Recently, the discovery of a class of small non-coding RNAs, named microRNAs (miRNAs), provides another promising method of cancer classification. MIRNAs play a critical role in the tumorigenic process by functioning either as oncogenes or as tumor suppressors. Here, we apply a neural-based classifier, default ARTMAP, to classify different types of cancers based on their miRNA expression fingerprints. Experimental results on the multiple human cancers show that default ARTMAP performs consistently well on all the data, and the classification accuracy is better than or comparable to that of the other popular classifiers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.