Abstract

Protein–protein interactions (PPIs) help to elucidate the molecular mechanisms of life activities and have a certain role in promoting disease treatment and new drug development. With the advent of the proteomics era, some PPIs prediction methods have emerged. However, the performances of these PPIs prediction methods still need to be optimized and improved. In order to optimize the performance of the PPIs prediction methods, we used the dropout method to reduce over-fitting by deep neural networks (DNNs), and combined with three types of feature extraction methods, conjoint triad (CT), auto covariance (AC) and local descriptor (LD), to build DNN models based on amino acid sequences. The results showed that the accuracy of the CT, AC and LD increased from 97.11% to 98.12%, 96.84% to 98.17%, and 95.30% to 95.60%, respectively. The loss values of the CT, AC and LD decreased from 27.47% to 14.96%, 65.91% to 17.82% and 36.23% to 15.34%, respectively. Experimental results show that dropout can optimize the performances of the DNN models. The results can provide a resource for scholars in future studies involving the prediction of PPIs. The experimental code is available at https://github.com/smalltalkman/hppi-tensorflow .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call