Abstract

Forecasting electricity demand is of utmost importance for ensuring the stability of the entire energy sector. However, predicting the future electricity demand and its value poses a formidable challenge due to the intricate nature of the processes influenced by renewable energy sources. Within this piece, we have meticulously explored the efficacy of fundamental deep learning models designed for electricity forecasting. Among the deep learning models, we have innovatively crafted recursive neural networks (RNNs) predominantly based on LSTM and combined architectures. The dataset employed was procured from a SolarEdge designer. The dataset encompasses daily records spanning the past year, encompassing an exhaustive collection of parameters extracted from solar farm (based on location in Central Europe (Poland Swietokrzyskie Voivodeship)). The experimental findings unequivocally demonstrated the exceptional superiority of the LSTM models over other counterparts concerning forecasting accuracy. Consequently, we compared multilayer DNN architectures with results provided by the simulator. The measurable results of both DNN models are multi-layer LSTM-only accuracy based on R2—0.885 and EncoderDecoderLSTM R2—0.812.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.