Abstract
Determination of protein structures typically entails building a model that satisfies the collected experimental observations and its deposition in the Protein Data Bank. Experimental limitations can lead to unavoidable uncertainties during the process of model building, which result in the introduction of errors into the deposited model. Many metrics are available for model validation, but most are limited to consideration of the physico-chemical aspects of the model or its match to the experimental data. The latest advances in the field of deep learning have enabled the increasingly accurate prediction of inter-residue distances, an advance which has played a pivotal role in the recent improvements observed in the field of protein ab initio modelling. Here, new validation methods are presented based on the use of these precise inter-residue distance predictions, which are compared with the distances observed in the protein model. Sequence-register errors are particularly clearly detected and the register shifts required for their correction can be reliably determined. The method is available in the ConKit package (https://www.conkit.org).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta crystallographica. Section D, Structural biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.