Abstract
In this study, deep learning method coupled with near-infrared (NIR) hyperspectral imaging (HSI) technique was used for nondestructively determining total viable count (TVC) of peeled Pacific white shrimp. Firstly, stacked auto-encoders (SAE) was conducted as a big data analytical method to extract 20 deep hyperspectral features from NIR hyperspectral image (900–1700 nm) of peeled shrimp stored at 4 °C, and the extracted features were used to predict TVC by fully-connected neural network (FNN). The SAE–FNN method obtained high prediction accuracy for determining TVC, with R P 2 = 0.927. Additionally, TVC spatial distribution of peeled shrimp during storage could be visualized via applying the established SAE–FNN model. The results demonstrate that SAE–FNN combined with HSI technique has a potential for non-destructive prediction of TVC in peeled shrimp, which supply a novel method for the hygienic quality and safety inspections of shrimp product.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.