Abstract

In this paper, we study the problem of efficient data recovery using the data mules approach, where a set of mobile sensors with advanced mobility capabilities re-acquire lost data by visiting the neighbors of failed sensors, thereby improving network resiliency. Our approach involves defining the optimal communication graph and mules' placements such that the overall traveling time and distance is minimized regardless to which sensors crashed. We explore this problem under different practical network topologies such as general graphs, grids and random linear networks and provide approximation algorithms based on multiple combinatorial techniques. Simulation experiments demonstrate that our algorithms outperform various competitive solutions for different network models, and that they are applicable for practical scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.