Abstract

The quality of a company's information system is essential and also its physical data model. In this article, the authors apply data mining techniques in order to generate knowledge from the information system's data model, and also to discover and understand hidden patterns within data that regulate the planning of flight hours of pilots and copilots in an airline. With this objective, they use Weka free software which offers a set of algorithms and visualization tools geared to data analysis and predictive modeling of information systems. Firstly, they apply clustering to study the information system and analyze data model; secondly, they apply association rules to discover connection patterns in data; and finally, they generate a decision tree to classify and extract more specific patterns. The authors suggest conclusions according these information system's data to improve future decision making in an airline's flight hours assignments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.