Abstract

Management strategies to control invasive species need information about dispersal distances to predict establishment potential. Fraxinus pennsylvanica is a North American anemochorous tree species that is invasive in many Central European floodplain forests. To predict seed-dispersal potential, the stochastic model WaldStat was used, which enables different options for directionality (isotropic and anisotropic) to be simulated. In this article, we (1) show empirical results of fructification and seed dispersal for this tree species. The model predicts approximately 250,000 seeds for one F. pennsylvanica tree. These results were used to (2) calculate species-specific dispersal distances and effects of wind direction. To consider the influence of wind on dispersal potential of the tree species, long-distance dispersal (LDD [95th percentile dispersal distance]) was calculated. Mean dispersal distances varied between 47 and 66m. LDD values modelled along the main wind direction ranged from 60 to 150m. Seed production, dispersal distance, and direction data were (3) incorporated into theoretical management scenarios for forest ecosystems. Finally (4), we discuss management options and the practical relevance of model scenarios in relation to the accuracy of spatial dispersal predictions. Further analyses should be focused on possible, well-adapted management concepts at stand level that could restrict the potential spread of invasive species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call