Abstract

Chronic absenteeism is an administrative term defining extreme failure for students to be present at school, which can have devastating long-term impacts on students. Although numerous prior studies have investigated associated variables and interventions, there are few studies that utilize both theory-driven and data-informed approaches to investigate absenteeism. The current study applied data-driven machine learning techniques, grounded in “The Kids and Teens at School” (KiTeS) theoretical framework, to student-level data (N = 121,005) to identify risk and protective variables that are highly associated with school absences. A total of 18 risk and protective variables were identified; all 18 variables were characteristics of the microsystem or mesosystem, emphasizing school absences' proximity to variables within inner ecological systems rather than the exosystem or macrosystem. Implications for future studies and health infrastructure are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.