Abstract

Large-scale distributed systems provide an attractive scalable infrastructure for network applications. However, the loosely coupled nature of this environment can make data access unpredictable, and in the limit, unavailable. We introduce the notion of accessibility to capture both availability and performance. An increasing number of data-intensive applications require not only considerations of node computation power but also accessibility for adequate job allocations. For instance, selecting a node with intolerably slow connections can offset any benefit to running on a fast node. In this paper, we present accessibility-aware resource selection techniques by which it is possible to choose nodes that will have efficient data access to remote data sources. We show that the local data access observations collected from a node's neighbors are sufficient to characterize accessibility for that node. By conducting trace-based, synthetic experiments on PlanetLab, we show that the resource selection heuristics guided by this principle significantly outperform conventional techniques such as latency-based or random allocations. The suggested techniques are also shown to be stable even under churn despite the loss of prior observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.