Abstract

The application of cylindrical and spherical symmetries for numerical studies of many-body problems is presented. It is shown that periodic boundary conditions corresponding to formally cylindrical symmetry allow for reducing the problem of a huge number of interacting particles, minimizing the effect of boundary conditions, and obtaining reasonably correct results from a practical point of view. A physically realizable cylindrical configuration is also studied. The advantages and disadvantages of symmetric realizations are discussed. Finally, spherical symmetry, which naturally realizes a three-dimensional system without boundaries on its two-dimensional surface, is studied. As an example, tectonic dynamics are considered, and interesting patterns resembling real ones are found. It is stressed that perturbations of the axis of planet rotation may be responsible for the formation of such patterns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.