Abstract
To examine the diagnostic performance of different models based on computed tomography (CT) imaging features in differentiating the invasiveness of non-small-cell lung cancer (NSCLC) with multiple pleural contact types. A total of 1,573 patients with NSCLC (tumour size ≤3 cm) were included retrospectively. The clinical and pathological data and preoperative imaging features of these patients were investigated and their relationships with visceral pleural invasion (VPI) were compared statistically. Multivariate logistic regression was used to eliminate confounding factors and establish different predictive models. By univariate analysis and multivariable adjustment, surgical history, tumour marker (TM), number of pleural tags, length of solid contact and obstructive inflammation were identified as independent risk predictors of pleural invasiveness (p=0.014, 0.003, <0.001, <0.001, and 0.017, respectively). In the training group, comparison of the diagnostic efficacy between the combined model including these five independent predictors and the image feature model involving the latter three imaging predictors were as follows: sensitivity of 88.9% versus 77% and specificity of 73.5% versus 84.1%, with AUC of 0.868 (95% CI: 0.848-0.886) versus 0.862 (95% CI: 0.842-0.880; p=0.377). In the validation group, the sensitivity and specificity of these two models were as follow: the combined model, 93.5% and 74.3%, the imaging feature model, 77.4% and 81.3%, and their areas under the curve (AUCs) were both 0.884 (95% CI: 0.842-0.919). The best cut-off value of length of solid contact was 7.5 mm (sensitivity 68.9%, specificity 75.5%). The image feature model showed great potential in predicting pleural invasiveness, and had comparable diagnostic efficacy compared with the combined model containing clinical data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.