Abstract

Abstract We measured fracture resistance curves (or R curves) for laminated veneer lumber (LVL) made with Douglas-fir veneer and polyvinyl acetate resin and for solid wood Douglas-fir. The LVL and solid wood R curves were the same for initiation of fracture, but the LVL toughness rose much higher than solid wood. Because a rising R curve is caused by fiber bridging effects, these differences show that the LVL resin has a large effect on the fiber bridging process. We exploited this resin effect to develop a test method for characterizing the ability of a resin to provide wood composites that are durable to moisture exposure. The test method exposed LVL specimens to vacuum pressure soaking and drying (VPSD) cycles and then monitored the rising portion of the LVL R curves as a function of treatment cycles. Douglas-fir/polyvinyl acetate LVL lost about 30% of its toughness after 16 cycles. In characterizing toughness changes, it was important to focus on the magnitude and rate of the toughness increase attributed to fiber bridging. We suggest that these properties are much preferred over other fracture or mechanical properties of wood that might be used when characterizing durability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call