Abstract

The aim of this study was to explore particle size dependent properties by combining long-term observations of equivalent black carbon (eBC) and number size distributions to investigate their correlation as function of particle size. The work was conducted in two main parts. The first part consisted of a short laboratory experiment to compare observed total particle light absorption (σabs) with that observed according to particle size by using a combination of a Differential Mobility Analyzer (DMA) and a Particle Soot Absorption Photometer (PSAP). The laboratory study confirmed strong similarities between the observed and derived σabs. In the second part the statistical approach using correlation between the σabs and the dN of each bin of the number size distribution was tested on long-term data ranging from 2002 to 2010 observed at Zeppelin station, Ny-Ålesund Svalbard. The data was clustered according to the number size distribution and grouped in four major categories: Washout, Nucleation, Intermediate and Polluted. Each category presented different features with respect to the derived eBC mass distributions, the Intermediate category showed similarities to the few available Single Particle Soot Photometer (SP2) observations in the Arctic. Overall, the statistical distribution of eBC, according to particle size, presented a larger dynamical range in the location of the mode(s). To check for consistency, the eBC mass distributions were transformed into number based eBC size distribution and compared to the observed total number size distribution. Whereas the Washout, Nucleation and Intermediate categories presented plausible number distributions, the Polluted category displayed a mode at small sizes (about 50 nm) that was significantly exaggerated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.