Abstract
Two experiments were conducted to investigate the feasibility of using corn starch as the basal diet to determine the ME of protein feedstuffs using the TME assay in Chinese Yellow chickens. In the first experiment, the TME of corn starch were determined by force-feeding 25 or 40 g of feed. To test the repeatability of the bioassay, the same experiment was repeated 4 times. In the second experiment, the TME of soybean meal and cottonseed meal was determined by considering corn starch as the basal diet, while corn was fed alone to the chickens. To test the accuracy of the TME assay for individual ingredients, the additivity was evaluated by determining the TME of 3 mixed diets: corn-soybean meal diet, corn-cottonseed meal diet, and corn-soybean meal-cottonseed meal diet. In experiment 1, the value of endogenous energy loss was 16.76 to 18.46 kcal/48 h, and no significant differences between the 4 assays were noted. The TME and energy metabolizability of the 25-g corn starch treatment (4.06 kcal/g and 98.06%) were higher than those of the 40-g treatment (3.79 kcal/g and 91.45%; P < 0.01); whereas the CV were less than that of the 40-g treatment, indicating that it is reasonable to use the TME value of the 25-g treatment in feed formulation. In experiment 2, the TME values for corn, soybean meal, and cottonseed meal were 4.02, 3.39, and 2.92 kcal/g, respectively. The observed and predicted TME values of the corn-soybean meal, corn-cottonseed meal, and corn-soybean meal-cottonseed meal diets were in high agreement with differences ranging from -0.02 to 0.01 kcal/g. None of the differences was significant, indicating an accurate measure of the TME of the individual ingredients. Thus, using corn starch as the basal diet to determine the TME of protein feedstuffs was validated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.