Abstract
As the most frequent drug target, G protein-coupled receptors (GPCRs) are a large family of seven trans-membrane receptors that sense molecules outside the cell and activate inside signal transduction pathways. The activity and lifetime of activated receptors are regulated by receptor phosphorylation. Therefore, investigating the exact positions of phosphorylation sites in GPCRs sequence could provide useful clues for drug design and other biotechnology applications. Experimental identification of phosphorylation sites is expensive and laborious. Hence, there is significant interest in the development of computational methods for reliable prediction of phosphorylation sites from amino acid sequences. In this article, we presented a simple and effective method to recognize phosphorylation sites of human GPCRs by combining amino acid hydrophobicity and support vector machine. The prediction accuracy, sensitivity, specificity, Matthews correlation coefficient and area under the curve values for phosphoserine, phosphothreonine, and phosphotyrosine were 0.964, 0.790, 0.999, 0.866, 0.941; 0.954, 0.800, 0.985, 0.828, 0.958; and 0.976, 0.820, 0.993, 0.861, 0.959, respectively. The establishment of such a fast and accurate prediction method will speed up the pace of identifying proper GPCRs sites to facilitate drug discovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.