Abstract

Counting animal populations is fundamental to understand ecological processes. Counts make it possible to estimate the size of an animal population at specific points in time, which is essential information for understanding demographic change. However, in the case of large populations, counts are time-consuming, particularly if carried out manually. Here, we took advantage of convolutional neural networks (CNN) to count the total number of nest-entrances in 222 photographs covering the largest known Psittaciformes (Aves) colony in the world. We conducted our study at the largest Burrowing Parrot Cyanoliseus patagonus colony, located on a cliff facing the Atlantic Ocean in the vicinity of El Cóndor village, in north-eastern Patagonia, Argentina. We also aimed to investigate the distribution of nest-entrances along the cliff with the colony. For this, we used three CNN architectures, U-Net, ResUnet, and DeepLabv3. The U-Net architecture showed the best performance, counting a mean of 59,842 Burrowing Parrot nest-entrances across the colony, with a mean absolute error of 2.7 nest-entrances over the testing patches, measured as the difference between actual and predicted counts per patch. Compared to a previous study conducted at El Cóndor colony more than 20 years ago, the CNN architectures also detected noteworthy differences in the distribution of the nest-entrances along the cliff. We show that the strong changes observed in the distribution of nest-entrances are a measurable effect of a long record of human-induced disturbance to the Burrowing Parrot colony at El Cóndor. Given the paramount importance of the Burrowing Parrot colony at El Cóndor, which concentrates 71% of the world's population of this species, we advocate that it is imperative to reduce such a degree of disturbance before the parrots reach the limit of their capacity of adaptation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.