Abstract
Computer-aided diagnostics of cancer pathologies based on histological image segmentation is a promising area in the field of computer vision and machine learning. To date, the successes of neural networks in image segmentation in a number of tasks are comparable to human results and can even exceed them. The paper presents a fast algorithm of histological image segmentation based on the convolutional neural network U-Net. Using this approach allows to get better results in the tasks of medical image segmentation. The developed algorithm based on neural network AlexNet was used for the creation of the automatic markup of the histological image database. The neural network algorithms were trained and tested on the NVIDIA DGX-1 supercomputer using histological images. The results of the research show that the fast algorithm based on neural network U-Net can be successfully used for the histological image segmentation in real medical practice, which is confirmed by the high level of similarity of the obtained markup with the expert one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.