Abstract
Excursion sets of Gaussian random fields (GRFs) have been frequently used in the literature to model two-phase random media with measurable phase autocorrelation functions. The goal of successful modeling is finding the optimal field autocorrelation function that best approximates the prescribed phase autocorrelation function. In this paper, we present a technique which uses convex quadratic programming to find the best admissible field autocorrelation function under a prescribed discretization. Unlike previous methods, this technique efficiently optimizes over all admissible field autocorrelation functions, instead of optimizing only over a predetermined parametrized family. The results from using this technique indicate that the GRF model is significantly more versatile than observed in previous studies. An application to modeling a base-catalyzed tetraethoxysilane aerogel system given small-angle neutron scattering data is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.