Abstract

Binge eating and self-induced vomiting are common, transdiagnostic eating disorder (ED) symptoms. Efforts to understand these behaviors in research and clinical settings have historically relied on self-report measures, which may be biased and have limited ecological validity. It may be possible to passively detect binge eating and vomiting using data collected by continuous glucose monitors (CGMs; minimally invasive sensors that measure blood glucose levels), as these behaviors yield characteristic glucose responses. This study developed machine learning classification algorithms to classify binge eating and vomiting among 22 adults with binge-spectrum EDs using CGM data. Participants wore Dexcom G6 CGMs and reported eating episodes and disordered eating symptoms using ecological momentary assessment for 2 weeks. Group-level random forest models were generated to distinguish binge eating from typical eating episodes and to classify instances of vomiting. The binge eating model had accuracy of 0.88 (95% CI: 0.83, 0.92), sensitivity of 0.56, and specificity of 0.90. The vomiting model demonstrated accuracy of 0.79 (95% CI: 0.62, 0.91), sensitivity of 0.88, and specificity of 0.71. Results suggest that CGM may be a promising avenue for passively classifying binge eating and vomiting, with implications for innovative research and clinical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.