Abstract
In this article we propose using small area estimators to improve the estimates of both the small and large area parameters. When the objective is to estimate parameters at both levels accurately, optimality is achieved by a mixed sample design of fixed and proportional allocations. In the mixed sample design, once a sample size has been determined, one fraction of it is distributed proportionally among the different small areas while the rest is evenly distributed among them. We use Monte Carlo simulations to assess the performance of the direct estimator and two composite covariant-free small area estimators, for different sample sizes and different sample distributions. Performance is measured in terms of Mean Squared Errors (MSE) of both small and large area parameters. It is found that the adoption of small area composite estimators open the possibility of 1) reducing sample size when precision is given, or 2) improving precision for a given sample size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.