Abstract

Genes may acquire nonsynonymous substitutions more rapidly when X-linked than when autosomal, but evidence for "fast-X evolution" has been elusive. Fast-X evolution could explain the disproportionate contribution of X-linked genes to hybrid sterility and other traits. Here, we use a comparative genomic approach, with sequences of 30-110 genes in four Drosophila species, to test for fast-X evolution. Specifically, the 3L autosome arm in D. melanogaster and D. simulans is homologous to the right arm of the X chromosome in D. pseudoobscura and D. miranda. We executed two paired comparisons to determine how often genes on this chromosome arm exhibit higher rates of nonsynonymous substitution in the D. pseudoobscura species group, as predicted by fast-X evolution. We found a statistically significant pattern consistent with fast-X evolution in one comparison and a similar trend in the other comparison. Variation in functional constraints across genes may have masked the signature of fast-X evolution in some previous studies, and we conclude paired comparisons are more powerful for examining rates of evolution of genes when X-linked over autosomal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.