Abstract

Cognitive task analysis (CTA) methods have grown out of the need to explicitly consider cognitive processing requirements of complex tasks. A number of approaches to CTA have been developed that vary in goals, the tools they bring to bear, and their data requirements. We present a particular CTA technique that we are utilizing in the design of new person-machine interfaces for first-of-a-kind advanced process control plants. The methodology has its roots in the formal analytic goal-means decomposition method pioneered by Rasmussen (1986). It contrasts with other approaches in that it is intended: (1) for design of first-of-a-kind systems for which there are no close existing analogues, precluding the use of CTA techniques that rely on empirical analysis of expert performance; (2) to define person-machine interface requirements to support operator problem-solving and decision-making in unanticipated situations; and (3) to be a pragmatic, codified, tool that can be used reliably by person-machine interface designers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.