Abstract
Proportional integral derivative (PID) controllers are important and widely used tools in system control. Tuning of the controller gains is a laborious task, especially for complex systems such as combustion engines. To minimize the time of an engineer for tuning of the gains in a simulation software, we propose to formulate a part of the problem as a black-box optimization task. In this paper, we summarize the properties and practical limitations of tuning of the gains in this particular application. We investigate the latest methods of black-box optimization and conclude that the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) with bi-population restart strategy, elitist parent selection and active covariance matrix adaptation is best suited for this task. Details of the algorithm's experiment-based calibration are explained as well as derivation of a suitable objective function. The method's performance is compared with that of PSO and SHADE. Finally, its usability is verified on six models of real engines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.