Proportional integral derivative (PID) controllers are important and widely used tools in system control. Tuning of the controller gains is a laborious task, especially for complex systems such as combustion engines. To minimize the time of an engineer for tuning of the gains in a simulation software, we propose to formulate a part of the problem as a black-box optimization task. In this paper, we summarize the properties and practical limitations of tuning of the gains in this particular application. We investigate the latest methods of black-box optimization and conclude that the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) with bi-population restart strategy, elitist parent selection and active covariance matrix adaptation is best suited for this task. Details of the algorithm's experiment-based calibration are explained as well as derivation of a suitable objective function. The method's performance is compared with that of PSO and SHADE. Finally, its usability is verified on six models of real engines.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE