Abstract

Given sales forecasts for a set of items along with the standard deviation associated with each forecast, we propose a new method of combining forecasts using the concepts of clustering. Clusters of items are identified based on the similarity in their sales forecasts and then a common forecast is computed for each cluster of items. On a real dataset from a national retail chain we have found that the proposed method of combining forecasts produces significantly better sales forecasts than either the individual forecasts (forecasts without combining) or an alternate method of using a single combined forecast for all items in a product line sold by this retailer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.