Abstract

Abstract In meteorological investigations, the reference variable or “ground truth” typically comes from an instrument. This study uses human observations of surface precipitation types to evaluate the same variables that are estimated from an automated algorithm. The NOAA/National Severe Storms Laboratory’s Multi-Radar Multi-Sensor (MRMS) system relies primarily on observations from the Next Generation Radar (NEXRAD) network and model analyses from the Earth System Research Laboratory’s Rapid Refresh (RAP) system. Each hour, MRMS yields quantitative precipitation estimates and surface precipitation types as rain or snow. To date, the surface precipitation type product has received little attention beyond case studies. This study uses precipitation type reports collected by citizen scientists who have contributed observations to the meteorological Phenomena Identification Near the Ground (mPING) project. Citizen scientist reports of rain and snow during the winter season from 19 December 2012 to 30 April 2013 across the United States are compared to the MRMS precipitation type products. Results show that while the mPING reports have a limited spatial distribution (they are concentrated in urban areas), they yield similar critical success indexes of MRMS precipitation types in different cities. The remaining disagreement is attributed to an MRMS algorithmic deficiency of yielding too much rain, as opposed to biases in the mPING reports. The study also shows reduced detectability of snow compared to rain, which is attributed to lack of sensitivity at S band and the shallow nature of winter storms. Some suggestions are provided for improving the MRMS precipitation type algorithm based on these findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.