Abstract

Tactoids are nuclei of an orientationally ordered nematic phase that emerge upon cooling the isotropic phase. In addition to providing a natural setting for exploring chromonics under confinement, we show that tactoids can also serve as optical probes to delineate the role of temperature and concentration in the aggregation behavior of chromonics. For high concentrations, we observe the commonly reported elongated bipolar tactoids. As the concentration is lowered, breaking of achiral symmetry in the director configuration is observed with a predominance of twisted bipolar tactoids. On further reduction of concentration, a remarkable transformation of the director configuration occurs, wherein it conforms to a unique splay-minimizing configuration. Based on a simple model, we arrive at an interesting result that lower concentrations have longer aggregates at the same reduced temperature. Hence, the splay deformation that scales linearly with the aggregate length becomes prohibitive for lower concentrations and is relieved via twist and bend deformations in this unique configuration. Raman scattering measurements of the order parameters independently verify the trend in aggregate lengths and provide a physical picture of the nematic-biphasic transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.