Abstract
This article describes the applicability of multivariate projection techniques, such as principal-component analysis (PCA) and partial least-squares (PLS) projections to latent structures, to the large-volume high-density data structures obtained within genomics, proteomics, and metabonomics. PCA and PLS, and their extensions, derive their usefulness from their ability to analyze data with many, noisy, collinear, and even incomplete variables in both X and Y. Three examples are used as illustrations: the first example is a genomics data set and involves modeling of microarray data of cell cycle-regulated genes in the microorganism Saccharomyces cerevisiae. The second example contains NMR-metabonomics data, measured on urine samples of male rats treated with either of the drugs chloroquine or amiodarone. The third and last data set describes sequence-function classification studies in a set of G-protein-coupled receptors using hierarchical PCA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.