Abstract

Continental basalts have complicated petrogenetic processes, and their chemical compositions can be affected by multi-staged geological evolution. Compared to lithophile elements, chalcophile elements including Ni, platinum-group elements (PGEs) and Cu are sensitive to sulfide segregation and fractional crystallization during the evolution of mantle-derived magmas and can provide constraints on the genesis of continental basalts. Cenozoic intra-continental alkaline basalts in the Nanjing basaltic field, eastern China, include high-Ca and low-Ca varieties. All these basalts have poor PGE contents with Ir ranging from 0.016ppb to 0.288ppb and high Cu/Pd ratios from 0.7×105 to 4.7×105 (5.7×103 for DMM), indicating that they were derived from sulfide-saturated mantle sources with variable amounts of residual sulfide during melting or might undergo an early-sulfide segregation in the mantle. Relatively high Cu/Pd ratios along with high Pd concentrations for the high-Ca alkaline basalts indicate an additional removal of sulfide during magma ascent. Because these basalts have high, variable Pd/Ir ratios (2.8–16.8) with low Ce/Pb (9.9–19.7) ratios and εNd values (+3.6–+6.4), crustal contamination is proposed to be a potential process to induce the sulfide saturation and removal. Significantly increased Pd/Ir ratios for few high-Ca basalts can be explained by the fractionation of laurite or Ru-Os-Ir alloys with olivine or chromite. For low-Ca alkaline basalts, their PGE contents are well correlated with the MgO, Sc contents, incompatible element ratios (Lu/Hf, Na/Ti and Ca/Al) and Hf isotopes. Good correlations are also observed between Pd/Ir (or Rh/Ir) and Na/Ti (or Ca/Al) ratios. Variations of these elemental ratios and Hf isotopes is previously documented to be induced by the mixing of peridotite xenolith-released melts during ascent. Therefore, we suggest that such xenolith–magma interaction are also responsible for the variable PGE compositions of low-Ca alkaline basalts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.