Abstract
Abstract The compound labyrinth weir is a new type of labyrinth weir that is considered a good applicable choice for increasing the capacity of discharge. The flow over a compound labyrinth weir is a complex problem because the flow behavior is three-dimensional. The present study aims to simulate the flow over the compound labyrinth weir into the critical regions that cannot be observed when using an experimental test. The computational fluid dynamics (CFD) programme was utilised to implement a sensitive analysis for this purpose and under different flow conditions. The MAPE and RMSE indices were utilised to verify the CFD results with experimental work. The statistical indices of the maximum error ME, RMSE and MAPE were 4.7%, 0.033 and 3.9 respectively. Therefore, the findings showed that there is a good matching between the experimental and CFD results. The CFD results demonstrated that the hydraulics behaviour of the compound labyrinth weir was similar to the oblique and linear weirs in high discharges. The results also confirmed that air cavities and bubbles existed behind the nappe flow in addition to the negative pressure that may occur beneath the nappe when the flow is aerated. Furthermore, the flow was divided into two parts and most streamlines were concentrated over the notches. Moreover, the flow velocity passing through the notches was greater than the flow velocity over the high crest of the compound labyrinth weir.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.